
Proceedings of S2 International Conference on Internet of Things ICIOT 2016

R ule-based m onitoring w ith eventcorrelation for
business process com pliance

Ping Gong1*,Zaiw en Feng2,Jianm in Jiang1

1.Com puterscience departm ent,Fujian norm aluniversity,
2.State key laboratory ofsoftw are engineering,W uhan U niversity

*pinggong@ fjnu.edu.cn

A bstract
Business processes com pliance m onitoring checks w hether running business processes com ply w ith involved
sem antic constraints,i.e.,com pliance rules.Business processes in m odern enterprise are rarely supported by a single
and centralized w orkflow system ,but instead im plem ented over different applications (e.g.,CRM ,ERP,W fM S,and
legacy system s).The running data (i.e.,event)aboutprocess executions are scattered across these applications.Under
the circum stances,understanding the com pliance ofrunning processes entails the com pliance m onitoring enabling to
correlate events from different applications and even different cases (event correlation herein is identifying events
related to the sam e com pliance rule instance).This paper introduces a fram ew ork nam ed as bpCM on for business
process com pliance m onitoring.bpCM on consists of an expressive com pliance rule language ECL and a rule system
ERS.ECL is a pattern-based form allanguage forspecifying com pliance rulesofm ultiple processperspectives,and also
allow s for describing event-correlation condition.ERS,generated from com pliance rules in ECL,in turn plays as a
com pliance m onitor enabling to correlate events efficiently by m eans ofan indexing structure created from event-
correlation conditions.The applicability ofbpCM on is dem onstrated by experim ents on a real-w orld data set.O verall,
bpCM on enables business process com pliance m onitoring m eeting real-w orld requirem ents.
K eyw ords: Businessprocesscom pliance,com pliance m onitoring,eventcorrelation

1. IN T R O D U CT IO N
Business process compliance (BPC) requires that

business processes are executed in conformance with
prescribed and approved sets of compliance rules. The latter
may stem, for example, from norms, standards, and laws
(Sadiq, 2011). In general, there are compliance checking
approaches of various kinds taken on different phases of
process life cycle to enforce the BPC, e.g., a-priori checking
at design time or a-posteriori checking based on the event
logs of completed process instances.

However, a-priori checking is not always sufficient, since
process instances may deviate from prescribed process
implementations (Schonenberg, 2008). Furthermore, in
many enterprise systems, processes are not model-driven,
but more or less hard coded in the respective system (de
Lenoi, 2016). In turn, a-posteriori checking might be
inapplicable for decision making when quick reaction is
needed for compliance violations. These thus emphasize the
need for run-time compliance checking, i.e., compliance
monitoring.

1.1 Problem statem ent
Business processes in modern enterprise are rarely

supported by only one centralized workflow system. Instead,
business processes as well as related compliance rules may
refer to activities whose executions are supported by
different applications (e.g., CRM, ERP, WfMS, or legacy
systems) (Reza Montahari-Nezhad, 2011). The information

about processes executions, i.e., events, which refer to the
facts about activity execution, are scattered across different
applications, and also in many cases there does not always
exist in-build mechanisms, with which events are collected
and correlated to process instances (Perez-Castillo, 2014). In
this context, understanding the compliance of the executions
of processes with respective to involved compliance rules is
a challenging issue.

Unlike existing works on BPC, which in general
implicitly assume the input events are already correlated
correctly to the same process instance (Ly, 2015), the
compliance monitoring in this circumstance is required to
enable to correlate events, which may be generated
separately from different applications and even different
process instances (also known as cases). Note that in this
work, we assume that events are collected and fed into
compliance monitors through relevant message oriented
middleware (MOM, e.g., ActiveMQ or Kafka) as Figure 1.
The event correlation here is identifying events related to
the same compliance rule instance, which corresponds to
one-time triggering of compliance rule. Considering
Example 1 from financial domain, it consists of compliance
rules B1-B3, which arm at frauds prevention in the context
of bank transactions. For the compliance rule B1, which
concerns with bank transfer transactions, it was triggered by
one transfer event, if there was another related transfer
event with an amount exceeded €10,000 (suspicious transfer)
occurred at maximum 30 days before. Here, these two
transfer events, which occur from different cases, are
correlated with respective to the rule if they satisfy a certain

3939

DOI: 10.29268/iciot.2016.0006

Proceedings of S2 International Conference on Internet of Things ICIOT 2016

Example 1. Following compliance rules address the prevention of frauds in banking domain [Basin, 2013, 2015]:

B1. Every bank transfer of a customer, who was involved in a suspicious bank transfer (e.g., with an amount greater than €10,000)
within the last 30 days , must be reported afterward within 2 days.

B2. The sum of withdraws from credit card account within 30 days, must not exceed the limit of €10,000.
B3. For each user, the number of withdrawing peaks over the last 30 days does not exceed a threshold of 5, where a peak is a value at

least twice the average over some time window (30 days).

Figure 1. Business process compliance monitoring

condition, e.g., with the same customer and/or account.
From then on, the transfer event, the trigger of the rule, was
required to be followed by one report event, which was
correlated for the triggered rule by the information of, e.g.,
customer and/or transaction ID, and may be generated from
relevant reporting system.

On the other hand, compliance rules, as constraints for
executions of business processes, usually refer to multiple
process perspectives, including:

Control flow perspective, which refers to the
occurrence, absence, and temporal order of activities,
e.g., compliance rule B1 requires report activity after
transfer activity.
Data perspective, which refers to constraints on
attributes of activities, e.g., compliance rule B1
restricts the amount of transfer activity, i.e., greater
than €10,000.
Time perspective refers to time-interval relations
between activities, e.g., compliance rule B3 refers to
the time interval of a period of 30 days as well as
within 2 days.
Resource perspective refers to roles and organizations
who are related to perform activities, e.g., compliance
rule B2 concerns with withdraw activity performed by
customer.

Altogether, to address the aforementioned challenge, the
framework for compliance monitoring, which normally
consists of the language for specifying compliance rules and
the monitor for ensuring the BPC, needs to meet following
requirements:

(R1) Multiple process perspectives. It must allow for
specifying and monitoring of compliance rules that
refer to multiple process perspectives, including the
control flow, data, time, and resource perspectives.
 (R2) Event correlation. As stated before, compliance
monitoring in modern enterprise is required to enable
correlating events, which may be generated from

different process instances or even applications, for
involved compliance rule. The compliance rule
language hence needs to support specifying the
correlation between events, and then the compliance
monitor should have the capability of identifying those
correlated events accordingly.
(R3) Efficiency. Under the context of potentially large
numbers of running process instances, efficient
monitoring mechanism is needed to deal with
correlating and reasoning over large volumes of events.

1.2 Contributions
This paper introduces the bpCMon 1 framework, which

consists of two parts: event-based compliance rule language
(ECL) and event reaction system (ERS). More precisely,
major contributions made in this work are summarized as
follows:

Event-based compliance rule language (ECL): ECL
builds on the notions of event and event-relation
patterns. It allows for specifying compliance rules
referring to multiple process perspectives. Furthermore,
it provides the way to specify correlations between
events.
Event reaction system (ERS): ERS is a rule system that
serves as compliance monitor for compliance rules in
ECL. ERS is able to cope with multiple process
perspectives. By a tree-based index structure, ERS
allows for efficiently correlating events. ERS differs
from existing rule systems (e.g., Drools (Drools, 2015),
Jess (Friedman-Hill, 2003)), not only in the rule form,
but also in the structure of working memory.
Evaluations for bpCMon: we implemented a proof-of-
concept prototype and applied it to a real-world data
set from Dutch Academic Hospital.

1
https://github.com/PingFair/bpCMon

4040

Proceedings of S2 International Conference on Internet of Things ICIOT 2016

Table 1. Overview on related works

Type works R1_c R1_d R1_t R1_r R2 R3

Graph-based

MonbuconEC(Montali,2010)

BPMN-Q(Awad,2011)

+

+/-

-

+/-

+/-

-

-

-

-

-

a

n.a

eCRG/CRG (Ly 2011,

Knuplesch 2015)

+ + + + - n.a

Logic-based

MonbuconLTL(Maggi 2011) + - - - - n.a

MonPoly(Basin 2015) + + + + + a

Pattern-based

Giblin, 2006

Turetken, 2012

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/-

-

-

n.a

n.a

Mulo, 2013 + - - - - n.a

bpCMon + + + + + a

Others MOP (Chen, 2009) + +/- - +/- - a

LOGFIRE/Drools

(Havelund, 2015)

+/- + + + + a

‘+’ full support, ‘+/-’ partial support, ‘-’ not supported; ‘av.’ available, ‘n.a.’ not available.

The remainder of this paper is structured as follows:
Related work is discussed in Section 2. Section 3 defines the
language ECL. The ERS compliance monitor is presented in

Section 4. Section 5 is the implementation and evaluation of
bpCMon. The last section concludes the paper and also
gives an outlook on future work.

2. R ELA T ED W O R K
The monitoring of business processes compliance

requires first specifying compliance rules by languages in
formal and unambiguous way. Based on the characteristics
of adopted languages, existing works of this category can be
classified into graph-based, logic-based, and pattern-based
ones.

MonbuconEC (Montali, 2010) specifies compliance rules
by the graph language Declare (Pesic, 2006), which is
extended to support specifying metric time as well as
activity life cycle. The rules in Declare are then translated
into axioms of the event calculus, on which the monitoring
mechanism of MonbuconEC depends. Based on the Declare
as well, MonbuconLTL (Maggi, 2011) translates the rules in
Declare into Linear Temporal Logic (LTL), and relies its
monitoring on colored automata. However, these two works

mainly aim at control-flow perspective, and have limited
supports for the data perspective, and also consider neither
event correlation nor aggregations. Works (Ly, 2011,

Knuplesch, 2015) utilize the (extended) Compliance Rule
Graph Language (eCRG) to support the control flow, data,
time, and resource perspectives. They annotate eCRG with
markings, colors, and texts to describe the states of
compliance rules. These annotations hence enable to detect
and highlight root causes of compliance violations. In
addition, BPMN-Q (Awad, 2011) is also a graph language
extended from BPMN and enables to specify compliance
rules of control-flow as well as partly data perspectives.

MonPoly (Basin, 2015) aims at monitoring compliance
rules in metric linear temporal logic (MLTL). By rewriting
rules for MLTL formulas, MonPoly enables to support
compliance monitoring for various perspectives, including
event correlation. To specify compensations for violations,
work (Giacomo, 2014) proposes the Linear Dynamics Logic
(LDL) by combining LTL with regular expression. However,
it only provides a theory without any further performance
data.

 The REALEM framework (Giblin, 2006) enables
specifying compliance rules by three compliance rule
patterns. These patterns are then translated into executable

4141

Proceedings of S2 International Conference on Internet of Things ICIOT 2016

rules for the specific infrastructures. Note that, our approach
includes more patterns, besides these three patterns. Works
(Turetken, 2012, Elgammal, 2014) proposed a pattern-based
language CRL to capture compliance requirements. The
patterns included in CRL range from control-flow to data as
well as resource perspectives. However, these works mainly
concern with introducing rich compliance patterns. In
addition, works (Mulo, 2013) proposes a domain specific
language (DSL) for specifying compliance rules and apply
complex-event processing for compliance monitoring.
However, these works are restricted to the control-flow
perspective yet.
 MOP (Feng, 2009) is claimed the fastest monitor for
parametric finite state properties with formalism-
independent specification. In MOP, approaches of trace
slicing and indexing structure enable monitor to attain quite
efficient performance. However, MOP does not yet support
data aggregation. The work (Havelund, 2015) implements a
rule system based runtime engine, i.e., LOGFIRE, by
ramifying RETE algorithm. The ramifications include
introducing a double-indexing among related nodes for
speeding up token matching. However, once some fact in
the node was updated, each related nodes as well as the
indexing mappings would need to be updated synchronously.
These thus might undermine engine efficiency. Besides,
from the specification aspect, the work has limited supports
for specifying control-flow perspective in high level.

To sum up, representative works from above different
fields are selected and compared according to their supports
for the monitoring requirements R1-R3, wherein, R1 is
further divided into R1_c, R1_d, R1_t, and R1_r to
correspond to the perspectives of control-flow, data, time,
and resource, respectively. As indicated by Table 1,
bpCMon, together with MonPoly, fully supports the
requirements R1-R3. But for the efficiency requirement, as
shown in the evaluation section of our technical report
(Gong, 2016), bpCMon is comparable to the known fastest
monitor MOP, and outperforms MonPoly as well as rule
engine Drools, which is selected as a representative for
RETE-based rule systems, since LOGFIRE is not yet
publicly assessable.

3. EVEN T-B A SED CO M PLIA N CE LA N G U A G E
Basic concepts of this work include event, event instance,

and event matching. In this work, events are the way of
describing the useful and relevant facts about activities
executions, e.g., for the bank transfer, suspicious transfer
event refers to the executed transfers with amounts greater
than €10,000. On the other hand, an event instance is used
to describe the fact of one activity executed at certain time
point, e.g., one transfer with amount €12,000 occurred at
12:00 01/09/2016, is an event instance, which in fact is
belonged to the suspicious transfer event. There is then one
relationship between event and event instance, i.e., event
matching, to depict if one event instance is belonged to one

event.

3.1 The definition of ECL
Compliance rule in this work is a constraint referring to

the desired property of executions of processes. As implied
in (Dwyer, 1999), most of finite-state system properties can
be classified into two basic patterns, Precedence and
Response, i.e., event p is always preceded (followed) by
event q. They can also be equally rewritten as, whenever
event p occurs, event q must occur before (after). Note that,
within the patterns, there are some essential ingredients: the
trigger for activating patterns, e.g., the occurrence of event
p; the target constrained by patterns, e.g., event q which
must occur before (after) when the rule was activated by p;
the scope as pattern takes effects on, e.g., a trace scope
specified by the qualifier always. These ingredients form the
basis for control-flow patterns. However, as mentioned
above, compliance rules usually refer to multiple
perspectives, including control-flow, data, time, and
resource. The patterns hence need to be extended to include
more elements for other perspectives. More specifically,
within ECL, for data and. resource perspective, introduced
elements include the structure of event, and event-
correlation condition; meanwhile the time constraint is also
introduced for metric-temporal relations among events. We
term as event-relation patterns for the patterns which are
composed by these ingredients. Currently, the patterns
introduced in the ECL are: before, after, when, beforeSince,
and afterUntil. Syntactically, these patterns, as predicates
together with events as variables, form a signature for ECL
definition.

Definition 1. (ECL) For an event e and an integer t, the
event-based compliance language ECL can be defined as
follows:

From the definition, the structure of ECL consists of two
parts, i.e., events part and rules part. The events part is for
events definitions which form an alphabet for ECL formula,
whereas rules in rule part are specified in trace-matching
formulas (TMF for short) tmf, which is defined by extending

ecl ::= [event]+ [tm f]+

tm f ::= alw ays em f | exists em f | ! tm f | tm f1 & & tm f2

em f ::= f | ! em f | em f1 & em f2

f ::= e | ors(e) | constr w hen f | before(tc,f,e,econ)

| after(tc,e,f,econ) | beforeSince(tc,f2,f1,e,econ)

| afterU ntil(tc,e,f1,f2,econ)

econ ::= e1.attr1=e2.attr2 | econ1 & & econ2

tc ::= [t,right)

right ::= t [d |h |m |s]

4242

Proceedings of S2 International Conference on Internet of Things ICIOT 2016

Table 2. The descriptions for each operation in rule system

Operation Description

#d(i, ta, tr) when tr instance was occurred, delete all correlated ta instances from related value

structure in i IIS.

#g(i,ta,tr,tc) when tr instance was occurred, get all correlated ta instances within time interval tc
from related value structure in i IIS.

#w(i,ta,tr) write ta instance as a new fact into related value structure in i IIS for correlated tr

instance.

#fail/succ(t,ta,e,tr)

#next

when tr instance was occurred, create a new t-type failure/success.

terminate the execution of current operation and go to next operation if there is,
otherwise read the next event instance.

#ge(i,ta,tr,tc) when tr instance was occurred, check whether there exist correlated ta instances
within time interval tc in related value structure of i IIS.

#empty(i,ta,tr) check whether it is empty for the value structure related to ta and tr in i IIS.

#eval(constr) evaluate whether the attributes constraint constr is satisfied in current moment

#tcm(ta, tr) compare the temporal order of ta instance with tr instance

where: ta, tr are events representing respectively the target and trigger of operation, i is a symbol for instances indexed structure IIS within
working structure, tc is the time constraint, and constr is the attribute constraints for event.

event-matching formulas (EMF) emf from time-point scope
to the trace scope by always or exists qualifiers as well as
negation and conjunction operators. An EMF emf is built on
a set of atomic formulas, which correspond to event-relation
patterns. Within the atomic formula, besides the control
flow specified for the involved events, it also includes time
constraints tc and events correlation condition econ.

Example 2. Every bank transfer of a customer, who has
within last 30 days been involved in a suspicious
transaction (e.g., with amount greater than 10,000), must be
reported within 2 days.
//events part
e1 = (1, 'transfer', [customer, amount, tId]) ;
e2 = (2, 'transfer', [customer, amount > 10000]) ;
e3 = (3, 'report', [customer, tId]) ;

// policy part
rule1 =
always(before([0,31d),e2,e1,e1.customer=e2.customer)->

after([0,3d),e1,e3, e1.customer=e3.customer &&
e1.tId=e3.tId))

4. EV EN T R EA CT IO N SYST EM
To monitor the fully featured ECL, it is necessary to have

a uniform and powerful analysis mechanism. In this section,
event reaction system (ERS) is proposed, which in fact is
the rule system plus working structure.

Definition 2. (Event Reaction System) Event reaction
system is a 2-ary tuple ers = (rs, ws), where:

(1) rs is a rules system with reaction rules, where reaction
is a sequence of operations over working structure;

(2) ws is a working structure in charge of organizing
instances for their efficiently storing and assessing.

Different to the net-like working memory in RETE
algorithm or other rule engines, ERS working structure is of
tree structure including index and bounded queue.

4.1 The rule system ofER S
 The rule system of ERS specifies relevance reactions
when event instance is read and matched. It is therefore
consisted of reaction rules in a form, e → c_reaction.
Semantically, the reaction rule means, when the trigger e is
matched, then reaction c_reaction is invoked and operations
in c_reaction are executed as specified, where operations
include various operators on working structure as Table 2. A
rule system rs is deterministic if there do not exist any two
rules in R with the same let hand, and ERS is deterministic
if its rule system is deterministic. In this work, only
deterministic rule system is considered.

For right hand of rule, i.e., c_reaction, it could be an
operation op as well as a compositional reaction, which is
composed by operations with sequential operator “;”. For
operation op, it could be an atomic operation, e.g., delete
operation #d, write operation #w, etc., a conditional
operation formed by conditional operator “? : ”, or a
composite operation by chaining operator “ ”. Note that, the
operators of sequential and chaining have different
semantics and usages. The sequential operator is used to
merge rule systems by connecting reactions with same
trigger event to form one composite reaction, and when rule
was invoked, each reactions within the composited reaction
would be executed sequentially; whereas the chaining

4343

Proceedings of S2 International Conference on Internet of Things ICIOT 2016

Figure 3. Instances Indexed Structure IIS

operator is used to chain operations to one composite
operation. The operations within the composite operation
are normally executed sequentially, however, if there was
one terminating operation among them, e.g., #next(), then
the followed operations would be skipped. For the more
formal and complete details, please refer to the technical
report (Gong, 2016).

Example 3. For a TMF always (after(_, e6, e7, e6.caseID =

e7.caseID)), which specifies that, for each trace, whenever
e6 occurs, then e7 should occur after. Its rule system can
then be specified as follows:

RS :
% when e6 instance occurs, writing e6 instance into the
% value structure for e6 and e7.
e6 -> #w(1,e6,e7)
% when e7 instance occurs, if there is related e6instance
% in the structure for e7 instance, delete all such e6
% instances and create success for such e6 instances
% and e7 instance; otherwise read the next.
e7 -> #ge(1, e6, e7) ? #d(1,e6,e7).#succ(2,e6,e7):#next()
% when end event occurred, if the structure of e6 for
% e7 is not empty, then create violation instances of
% type 3 for each such e6 instance; otherwise read the
% next.
end -> !#empty(1,e6,e7) ? #fail(3,e6,e7):#next()

4.2 Instances indexed structure IIS
Value structure is an essential part for executing

operations. To efficiently assess the correlated target
instances for certain trigger in executing an operation, for
example, #g(0,ta, tr), the value structure, storing ta
instances, is equipped with an index which is defined based
on the event-correlation condition between events ta and tr.
In this work, we term the instances value structure with
index as instances indexed structure (IIS) and its structure is
depicted as Figure 3, which is of four layers and with
storing mechanism, i.e., queue used in this work, as its leaf
nodes.

Within the IIS, its core component is the value structure,
which is used to store target event instances by queues and
further equips such queues with indexes, which are
determined by correlating sequence. As depicted with
dashed rectangle in Figure 3, a value structure, defined as

(< caseID >, b,_), where <caseID> is the correlating
attributes sequence and b is the bound of queue,
semantically corresponds to a set of pairs of queue together
with related index values (i.e., ctuple), for example a queue
queue_6_7_01 and a ctuple < 01 > in the figure.

In fact, the IIS is built on following two basic operations
during the compliance monitoring for data perspective, i.e.,
get instances and write instance. However, as for write
operation, after target instances stored, there are two
subcases with subtle differences regarding to whether the
stored instance requires the desired trigger to be occurred
after. IIS is then divided into two types: beforeIIS, wherein
the stored target instance does not require certain trigger
instance must occur after, and afterIIS, where each stored
target instance requires desired trigger instance must occur
after. For example, for the operation #w(1, e6,e7), it writes
occurred e6 instance into afterIIS, and for each stored e6
instance, it requires desired e7 to be occurred; on the other
hand, if changed 1 to 0 in the operation, the stored e6

instance in beforeIIS would not require e7 instance to be
occurred after. The working structure is then consisted of
beforeIIS, afterIIS, failures container, and success container.
During monitoring, it stores relevance data including event
instances as well as successes and failures. The compliance
states, i.e., compliant, partially compliant, and violated, are
determined by the configurations of working structure,
which also include contents of containers of failures and
successes.

Due to the rule system and working structure, ERS gains
the capability of computing the compliance of running trace
with respect to related compliance rules. To leverage the
power of ERS, compliance rules in ECL need to be
translated into ERS-based monitors. Based on the structure
of ECL formula, there are two translations for EMF and
TMF formulas. They share similar steps, i.e., creating from
formula working structures as well as rule systems. For the
more detailed, please refer to the technical report.

5. IM PLEM EN T A T IO N A N D EV A LU A T IO N

5.1 Im plem entation
The basic structure of ERS-monitor is consisted of three

parts, working interface, working structure, and rule system:
 working interface: acts as a data reader in charge of
reading, filtering and matching instances from data
source. It is implemented as Java interface
WorkingInterface, including below essential
methods:
- Instance next(): read the instance from the

data source;
- Event matchToEvent(Instance inst):

match the instance to event;
- void init() and void close(): initialize

and close the working interface.
 working structure: it is the core component of ERS,
which is implemented as Java class, including beforeIIS,

4444

Proceedings of S2 International Conference on Internet of Things ICIOT 2016

Table 3. Violations for incompliant rules in MCC and MAC

rules R1 R2 R4 R5 R6 R7 R8 R9 R11 R12 R14

#violation(MCC) 855 192 352 660 2169 75 958 848 8 45 823

#violation(MAC) 855 192 352 660 2169 75 958 848 8 45 823

Table 4. Performance of bpCMon monitor running 5 times for the hospital logs

rules #eventInstances #violation time(sec) memory(MB)

5.39 / 5.49 378.3 / 350.2

4.936 / 5.492 326.5 / 294.59

R1-R16 151419 7085 5.143 / 5.406 377.53 / 335.19

5.361 / 5.648 293.69 / 240.18

5.370 / 5.471 385.51 / 328.45

afterIIS, and success/failure containers as well as basic
operations over queues.

 rule system: it is also implemented as a Java class
including methods for manipulating rules:
- Reactions getReaction(Event event):

get the reaction for event, where Reactions is a
interface including method void
doReaction(WorkingStructure ws,
Assignment assign) to execute the reaction.

- RuleMap rulesJoin(RuleMap other):
merging two rule systems, wherein the sequential
operator is used to connect reactions with the same
trigger.

Note that, the real implementation is far more complicate
than the above. But it is enough for presenting basic

monitoring procedure of ERS-monitor.
As described in the Algorithm 1, ERS-monitor reacts on

each matched instances until the end of running is reached.
For each time of reaction, an assignment is created and also
added the just matched instance. The main use of
assignment is temporally storing the intermediate results
generated during operations executing, e.g. #ge operation
generates a set of instances after executed. After the reaction,
in line 13-16, the monitor responses compliance situations
by checking two containers in working structure.

5.2 Evaluations
To evaluate the applicability of bpCMon in case-by-case

and also across-case context which requires monitor has the
capability of event correlation, one test case is adopted
which includes the real datasets from the hospital and 16
compliance rules of various perspectives. To read the data
from the hospital logs in XES format (Gnther et al., 2014),
class XESWorkingInterface, which implements the
interface WorkingInterface, is developed based on the
OpenXES libary. The XESWorkingInterface is in
charge of generating interested event instances by parsing,
selecting, and merging related event-scope and trace-scope
attributes values. These instances also include instances of
endOfCase and endOfLogs for the end of trace and logs
respectively. After the rules are specified in ECL formulas,
relevant ERS monitors are generated automatically from
these formulas.

The evaluation is performed on Luna version of Eclipse
IDE with jdk-1.8.0 40 in laptop with win7 64-bit OS,
Intel(R) i5 CPU2.4G, and 8G RAM. It is consists of two

4545

Proceedings of S2 International Conference on Internet of Things ICIOT 2016

phrases: at first phrase, the ERS monitor runs over the logs
in case-by-case 100 times, i.e., monitoring in case-by-case
(MCC). Within each running, a new composite ERS
monitor is regenerated by merging each ERS monitors in
randomly order. At second phrase, a composite ERS
monitor runs over the across-case logs which is generated
by mixing each case from the logs but keeping the order for
each event instances from the same case, i.e., monitoring in
across-case (MAC). After two phases tests, as shown in
Table 3, no matter in MCC or MAC, the logs is compliant
with five rules, R3, R10, R13, R15, R16, and for other rules,
there are various numbers of violations. The findings are
that: the independency of working structures for these
formulas is demonstrated by the same violations number
#violation in 100 times running from first phrase, and
thanks to the event correlation of ERS, the applicability of
bpCMon in across-case context is also indicated by the same
violation numbers in MCC and MAC.

As for the running cost, it mainly consists of two parts:
for ERS monitor running and for OpenXES caching all the
event instances. Within Table 4, the symbol “/” is used to
delimit the cost for ERS monitor (at the front) and
OpenXES file caching (at the behind). From these cost data,
it can be implies that, ERS-monitor is of practically efficient.
For the factors influencing the performances of ERS-
monitor, the event features and reaction rules length would
be the main factors. Event features here refer to the event
structure property and the sub-event relation among events.
If the event consists of complex attributes constraints or
there exist couples of events with sub-event relation, then
the cost of event matching as well as reaction would be
increased. In the test case, there are three pairs of events
with sub-event relation. As for the memory cost of ERS
monitor, it might be related to the working manner of
OpenXES: loading all the data from logs file into the
memory and then the data available for use. After data
loaded, there is a memory overhead for ERS-monitor ranged
from 8% to 20%.

6. CO N CLU SIO N S
Understanding the compliance of running processes in

current enterprise is challenging since compliance
monitoring needs to enable to correlate events from
different applications and even different cases. This work
presents a compliance monitoring framework bpCMon,
which consists of: an event-based compliance language
(ECL) for specifying compliance rules as well as event
correlation condition, and event reaction system (ERS) as
engine for compliance monitoring. Experiments on a real
life hospital logs over 16 compliance rules indicate the
applicability of bpCMon in case-by-case as well as across-
case context, since its capability of correlating event.

As for the future works, from the practical view, a
friendly interface is needed to support users specifying and
managing their compliance rules; from the theoretical view,

it is also important to further devise methods to resolve the
rules conflict issue and the intersecting of working
structures as well as their possible relations. In fact, such
solutions would be the basis for addressing the scalable
issue of the bpCMon when considering huge numbers of
rules. Finally, further evaluations are also needed for the
soundness of bpCMon.

7. A CK N O W LED G M EN T
This work was supported in part by NSFC 61100017 and

NSF of Fujian Province No.2014J01221.

8. R EFER EN CES
Sadiq, S. (2011): A roadmap for research in business process compliance.
In: W. Abramowicz, L. Maciaszek, K. Wecel (Eds.) BIS 2011 Workshps,
LNBIP 97, pp. 1-4

Schonenberg H. Mans R., Russell N., Mulyar N., and van der Aalst W.M.P.
(2008): Process flexibility: A survey of contemporary approaches. In: J.L.G.
Dietz et al. (Eds.):CIAO 2008 and EOMAS 2008, LNBIP 10, pp. 16-30

de Leoni M., van der Aalst W.M.P., and Dees M. (2016): A general process
mining framework for correlating, predicting and clustering dynamic
behavior based on event logs. Information Systems, 56:235-257

Reza Montahari-Nezhad H. Saint-Paul R., Casati F., and Benatallah B.
(2011): Event correlation for process discovery from web service
interaction logs. The VLDB Journal 20:417-444

 Perez-Castillo R., Weber B., Garcia-Rodriguez de Guzman I. (2014):
Assessing event correlation in non-process-aware information systems.
Softw Syst Model 13:1117-1139

Drools(2015):http://docs.jboss.org/drools/release/6.3.0.Final/droolsdocs/ht
ml_single/index.html

Friedman-Hill E. (2003): Jess in action: Rule based systems in Java.
Manning publications.

Ly L.T., Maggi F.M., Montali M., Rinderle-Ma S., van der Aalst W.M.P.
(2015): Compliance monitoring in business processes: functionalities,
application, and tool-support. Information Systems. 54, 209–234

Elgammal A., Turetken O., van den Heuvel W. (2014): Formalizing and
applying compliance patterns for business process compliance. Software &
Systems Modeling, pp 1-28

Montali M., Maggi M.F., Chesani F., Mello P., and Van der Aalst W.M.P.
(2010): Monitoring business constraints with the event calculus. ACM
Transactions on Embedded Computing Systems, Vol.9, No. 4, 1-29

Pesic M. and Van der Aalst W.M.P. (2006): A declarative approach for
flexible business processes management. In: J. Eder, S. Dustdar et al.(Eds.):
BPM 2006Workshops, LNCS 4103, pp.169-180

Maggi F.M., Montali M., Westergaard M., Van der Aalst W.M.P (2011).:
Monitoring business constraints with linear temporal logic: An approach
based on colored automata. In: S.Rinderle-Ma, F. Toumani, and K.
Wolf(Eds.) BPM 2011, LNCS 6896, pp.132–147

Ly L.T., Rinderle-Ma S., Knuplesch D., and Dadam P. (2011): Monitoring
business process compliance using compliance rule graphs, In: R.
Meersman, T.Dillon, and P. Herrero(Eds.): OTM 2011, Part I, LNCS 7044,
pp. 82-99

Knuplesch D., Reichert M., and Kumar A. (2015): Visually monitoring

4646

Proceedings of S2 International Conference on Internet of Things ICIOT 2016

multiple perspectives of business process compliance. In: Hamid, R. M. N.,
Jan, R., and Matthias,W.(Eds.), BPM 2015. LNCS 9253,pp. 263-279

Awad A.,Weidlich M., andWeske M. (2011): Visually specifying
compliance rules and explaining their violations for business processes. J.
Visual Languages and Computing. 22(2011), pp. 30–55

Basin D., Klaedtke F., Mller S., and Zlinescu E.: Monitoring metric first-
order temporal properties. In: Journal of ACM, 62(2),pp:1-38 (2015)

Basin D., Klaedtke F., Mller S, etc. (2013): Monitoring of temporal first
order properties with aggregations. In: proceeding of RV 2013, LNCS 8174,
pp. 40-58

Giacomo G., Masellis R.D., Grasso M., Maggi M.F., and Montali M.
(2014): Monitoring business metaconstraints based on LTL and LDL for
finite traces. In: Shazia W. S., Pnina S., Hagen V.(Eds.) BPM 2014. pp. 1–
17

Giblin, C., Muller, S., Pfitzmann, B. (2006): From regulatory policies to
event monitoring rules: towards model-driven compliance automation.
Technical report RZ3662, IBM Research.

Turetken O., Elgammal, A., and van den HeuvelW.J. (2012): Capturing
compliance requirements: a pattern-based approach. IEEE Software, IEEE
Computer Society

Mulo, E., Zdun, U., and Dustdar, S. (2013): Domain-specific language for
event-based compliance monitoring in process-driven SOAs. In: SOCA
(2013) 7: 59-73

Mulo, E., Zdun, U., and Dustdar, S. (2009): Monitoring web service event
trails for business compliance. In: IEEE International Conference on
Service-oriented Computing and Applications(SOCA), IEEE.

Barbon, F., Traverso, P., Pistore, M., and Trainotti, M. (2006): Run-time
monitoring of instances and classes of web service compositions. In: IEEE
Inernational Conference on Web Services(ICWS’06), IEEE computer
society.

Chen F., Jin D., Meredith P.O.N., and RoÅu G(2009).: Efficient formalism
independent monitoring of parametric properties. In: ASE 2009, IEEE
press, pp. 383-394

Havelund K. (2015): Rule-based runtime verification revisited. In: Journal
of Software Tools Technology Transfer, 17:143-170

Gong P., and Knuplesch D. (2016): bpCMon: An Efficient Framework for

Business Process Compliance Monitoring. Technical Report UIB-2016-
03, Ulm University, In: https://github.com/PingFair/bpCMon.

Dwyer, M.B., Avrunin, G.S., Corbett, J.C. (1999): Patterns property
specifications for finite-state verification. In: ICSE 99, Los Angeles CA,
ACM, pp. 411-420

Gnther C.W., and Werbeek E. (2014): XES standard definition. In
http://www.xes-standard.org/_media/xes/ xesstandarddefinition-2.0.pdf,
March 28, version 2.0

A uthors

Ping G ong received his PhD
degree from SKLSE ofW uhan
U niversity in 2009.H e now isa
lecturerin Fujian norm al
U niversity.H is research interests
include,stream com puting,
business process m anagem ent,
and service com puting.

Zaiw en Feng received his PhD
degree from SKLSE ofW uhan
U niversity in 2009.H e now is a
lecturerin W uhan University.H is
research interests include,
requirem entengineering,business
process m anagem ent, and service
com puting.

Jianm in Jiang received his PhD
degree from Chengdu com puting
institute ofChinese Academ y of
Sciences in 2006.H e now is an
associate professorin Fujian N orm al
U niversity.H is research
interestsinclude,softw are
engineering.

4747

